	Name:	
MA 3053 Section 01	Practice Exam 1	November 19, 2019

Follow the instructions for each question and show enough of your work so that I can follow your thought process. If I can't read your work, answer or there is no justification to a solution, you will receive little or no credit!

1. Let $f: X \to Y$ and $g: Y \to Z$. Prove that if $g \circ f$ is an injection, then f is an injection.

2. Let $f: X \to Y$. Given functions $g, h: W \to X$ such that whenever $f \circ g = f \circ h$, then g = h; show that f is injective.

3. Let $f: X \to Y$ and $P_{\alpha} \subseteq Y$ for every $\alpha \in A$ Show

$$f^{-1}\left(\bigcap_{\alpha\in A}P_{\alpha}\right) = \bigcap_{\alpha\in A}f^{-1}(P_{\alpha})$$

4. Let $f: X \to Y$ and $P_{\alpha} \subseteq X$ for every $\alpha \in A$ Show

$$f\left(\bigcup_{\alpha\in A}P_{\alpha}\right) = \bigcup_{\alpha\in A}f(P_{\alpha})$$

5. Let \sim be a relation on $X = \mathbb{Z} \times \mathbb{Z}$ by $(a, b) \sim (c, d)$ if and only if a + d = b + c. Show \sim is an equivalence relation on X.

6. Let ~ be a relation on $X = \mathbb{Z} \times \mathbb{N}^+$ by $(a, b) \sim (c, d)$ if and only if ad = bc. Show ~ is an equivalence relation on X.

7. Let \mathcal{F} be a family of sets and let \leq be a relation on \mathcal{F} by $X \leq Y$ if and only if $X \subseteq Y$. Show \leq is a partial order on \mathcal{F} .

8. Let X be a set and $P = \{f : f : X \to X\}$. Define the relation \preceq on P by $f \preceq g$ if and only if $f(x) \leq g(x)$ for all $x \in X$. Prove \preceq is a partial order on P.

9. What are the multiplication and addition tables for the congruence classes in $\mathbb{Z}/6\mathbb{Z}$.