\qquad

Follow the instructions for each question and show enough of your work so that I can follow your thought process. If I can't read your work, answer or there is no justification to a solution, you will receive little or no credit!

1. Let $f: X \rightarrow Y$ and $g: Y \rightarrow Z$. Prove that if $g \circ f$ is an injection, then f is an injection.
2. Let $f: X \rightarrow Y$. Given functions $g, h: W \rightarrow X$ such that whenever $f \circ g=f \circ h$, then $g=h$; show that f is injective.
3. Let $f: X \rightarrow Y$ and $P_{\alpha} \subseteq Y$ for every $\alpha \in A$ Show

$$
f^{-1}\left(\bigcap_{\alpha \in A} P_{\alpha}\right)=\bigcap_{\alpha \in A} f^{-1}\left(P_{\alpha}\right)
$$

4. Let $f: X \rightarrow Y$ and $P_{\alpha} \subseteq X$ for every $\alpha \in A$ Show

$$
f\left(\bigcup_{\alpha \in A} P_{\alpha}\right)=\bigcup_{\alpha \in A} f\left(P_{\alpha}\right)
$$

5. Let \sim be a relation on $X=\mathbb{Z} \times \mathbb{Z}$ by $(a, b) \sim(c, d)$ if and only if $a+d=b+c$. Show \sim is an equivalence relation on X.
6. Let \sim be a relation on $X=\mathbb{Z} \times \mathbb{N}^{+}$by $(a, b) \sim(c, d)$ if and only if $a d=b c$. Show \sim is an equivalence relation on X.
7. Let \mathcal{F} be a family of sets and let \preceq be a relation on \mathcal{F} by $X \preceq Y$ if and only if $X \subseteq Y$. Show \preceq is a partial order on \mathcal{F}.
8. Let X be a set and $P=\{f: f: X \rightarrow X\}$. Define the relation \preceq on P by $f \preceq g$ if and only if $f(x) \leq g(x)$ for all $x \in X$. Prove \preceq is a partial order on P.
9. What are the multiplication and addition tables for the congruence classes in $\mathbb{Z} / 6 \mathbb{Z}$.
